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ABSTRACT 

Validating prognostic or predictive candidate genes in appropriately powered breast 

cancer cohorts is of utmost interest. Our aim was to develop an online tool to draw survival 

plots, which can be used to assess the relevance of the expression levels of various genes on 

the clinical outcome both in untreated and treated breast cancer patients. 

A background database was established using gene expression data and survival 

information of 1809 patients downloaded from GEO (Affymetrix HGU133A and HGU133+2 

microarrays). The median relapse free survival is 6.43 years, 968/1231 patients are estrogen-

receptor (ER) positive, and 190/1369 are lymph-node positive. After quality control and 

normalization only probes present on both Affymetrix platforms were retained (n=22,277). To 

analyze the prognostic value of a particular gene, the cohorts are divided into two groups 

according to the median (or upper / lower quartile) expression of the gene. The two groups 

can be compared in terms of relapse free survival, overall survival and distant metastasis free 

survival. A survival curve is displayed, and the hazard ratio with 95% confidence intervals 

and logrank P value are calculated and displayed. Additionally, three subgroups of patients 

can be assessed: systematically untreated patients, endocrine-treated ER positive patients, and 

patients with a distribution of clinical characteristics representative of those seen in general 

clinical practice in the US. Web address: www.kmplot.com 

We used this integrative data analysis tool to confirm the prognostic power of the 

proliferation-related genes TOP2A and TOP2B, MKI67, CCND2, CCND3, CCNDE2, as well 

as CDKN1A and TK2. We also validated the capability of microarrays to determine estrogen 

receptor status in 1231 patients. The tool is highly valuable for the preliminary assessment of 

biomarkers, especially for research groups with limited bioinformatic resources. 
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BACKGROUND  

Biomarkers are a readily measurable set of parameters with directly applicable 

information on the clinical course of cancer. The first biomarkers were established at the 

cellular, histological, or whole organism level. For example, tumor grade has traditionally 

been regarded as an important indicator of breast cancer prognosis [1].  Also, Adjuvant! 

Online, a SEER (Surveillance Epidemiology and End Results – an authoritative source of 

information on cancer incidence and survival in the United States) data–based algorithm, 

integrates various clinical (age, nodal status) and histopathological parameters (estrogen 

receptor, size, grade) in order to predict 10-year mortality rate in breast cancer [2,3]. With the 

introduction of biomarkers such as estrogen receptor and HER2 in evaluating the clinical 

course of breast cancer, biomarker discovery has shifted towards a more molecular level with 

a large number of individual gene or protein expression levels being tested. To date numerous 

additional genes have been suggested as being capable to predict prognosis in breast cancer 

[4]. This shift has also been further instigated by the fact that qualitative biomarkers are 

usually difficult to assess in a consistent fashion; e.g. the concordance of tumor grade 

assessments by three independent pathologists is less than 50% [5].  

Following the identification of new gene expression based biomarkers various steps of 

independent validations must be completed. While direct measurement of gene expression 

levels, e.g. by QRT-PCR, is the most reliable method to do this, it is often desirable to test 

few candidate genes without major further investment in order to choose the most promising 

candidates and eliminate those that are most likely to fail. Microarray cohorts combined with 

appropriate clinical data offer exactly such a cost effective tool to prescreen potential new 

biomarkers.  

The accuracy of microarray based gene expression measurements has been evaluated 

by a wide array of diverse studies [6,7,8], leading to the general conclusion that it is a 

powerful surveyor of gene expression changes when its limitations are considered properly. 

While absolute gene expression levels are hard to estimate, relative gene expression levels can 

be measured in a consistent fashion; therefore, a preliminary test to evaluate prognostic 

biomarkers based on their relative gene expression levels is a prudent exploitation of already 

existing clinical microarray cohorts.   
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The Kaplan–Meier estimator (also known as the product limit estimator) estimates the 

survival function from life-time data. An important benefit of the Kaplan–Meier curve is that 

the method takes into account "censored" data — losses from the cohort before the final 

outcome is observed (for instance, if a patient withdraws from a study). When no truncation 

or censoring occurs, the Kaplan–Meier curve is equivalent to the empirical distribution [9]. 

The association between a clinical parameter (or biomarker) and survival can be visualized by 

drawing a Kaplan-Meier plot in which patients are split into groups according to the 

parameter.  

Our aim was to use the data generated in gene expression studies to develop an online 

survival analysis tool that can be used to assess the effect of single genes on breast cancer 

prognosis. Since many of the current ASCO proposed proliferation-related genes [10] do not 

hold sufficient evidence to be introduced in clinical practice, we also aimed to assess the 

effect of their expression on survival. Finally, we evaluated the capability of microarray data 

to predict estrogen receptor (ER) status. 

 

METHODS   

A database was established using gene expression data downloaded from GEO. For 

this, the keywords “breast”, “cancer”, “gpl96”, and “gpl570” were used in GEO 

(http://www.ncbi.nlm.nih.gov/geo/). Only publications with available raw data, clinical 

survival information, and at least 30 patients were included. Only Affymetrix HG-U133A 

(GPL96) and HG-U133 Plus 2.0 (GPL570) microarrays were considered, because they are 

frequently used and because these two particular arrays have 22,277 probe sets in common. 

The use of nearly identical platforms is important since different platforms for gene-

expression profiling measure expression of the same gene with varying precision, on different 

relative scales, and with different dynamic ranges [11]. An overview of the clinical data is 

presented on Table 1. 

After an initial quality control, redundant samples (n=384) were excluded [12]. The 

raw .CEL files were MAS5 normalized in the R statistical environment (www.r-project.org) 

using the affy Bioconductor library [13]. MAS5 can be applied to individual chips, making 

future extensions of the database uncomplicated. Moreover, MAS5 ranked among the best 
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normalization methods when compared to the results of RT-PCR measurements in our recent 

study [8]. Then, only probes measured on both GPL96 and GPL570 were retained 

(n=22,277). At this stage, we performed a second scaling normalization to set the average 

expression on each chip to 1000 to avoid batch effects [14].  

The Kaplan-Meier plotter is set up using a central server which can be reached over 

the internet. The background database is handled by a MySQL server, which integrates gene 

expression and clinical data simultaneously. Data is loaded into the R statistical environment, 

where calculations are performed. The package "survival" is used to calculate and plot 

Kaplan-Meier survival curves, and the number-at-risk is indicated below the main plot. 

Hazard ratio (and 95% confidence intervals) and logrank P are calculated and displayed. The 

user receives the feedback over the webpage. The system is summarized on Figure 1.  

To determine expression of the ER gene ESR1, we used the results from Gong et al., 

who found that the probe set 205225_at had the highest mean and median expression values, 

the greatest range of expression values, and the strongest correlation with clinical ER status, 

and was therefore suggested for future ESR1 determinations [15]. We also used their 

suggested threshold of 500 to determine ER status of the samples. 

When comparing data from Surveillance, Epidemiology, and End Results (SEER), the 

population-based tumor registry program of the National Cancer Institute [16] to the overall 

characteristics of the patients used in our analysis (only patients with all available clinical 

data), some differences were observed. These differences could influence actual results when 

interpreting the resulting Kaplan-Meier plot. Therefore, a randomization algorithm–selected 

set of patients of similar, over-represented clinical characteristics were removed in making an 

additional filter for the analysis. 

 

RESULTS 

We identified 1809 unique patients meeting our criteria in GEO. The median relapse 

free survival is 6.43 years, 968/1231 patients are estrogen-receptor positive by histological or 

radioimmunoassay based evaluation, and 190/1369 are lymph-node positive. Furthermore, 

1593 patients have relapse free survival data, 594 have overall survival data and 767 have 

distant metastasis free survival data. 
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To analyze the association between a queried gene and survival, the samples are 

grouped according to the median (or upper or lower quartile) expression of the selected gene, 

and then the two groups are compared by a Kaplan-Meier plot. Before running the analysis 

the patients can be filtered using ER status, lymph node status, and/or grade. Additionally, as 

an alternative to relapse free survival, overall survival and distant metastasis free survival can 

be employed. The web address is www.kmplot.com. 

Many of the published microarray cohorts used patient selection criteria corresponding 

to the goals of the particular study. Therefore, the patients in our database may not be 

representative of breast cancer patients in general. Users of our service may be interested how 

a given gene is associated with outcome in a general “all comer” cohort, as might be seen in 

the everyday clinical practice. For this we established a patient cohort similar to SEER 

published prevalences. The eliminated samples were ER positive, node negative patients in all 

three grades from different datasets. The resulting reduced database includes 500 patients, and 

the prevalences of the individual breast cancer subtypes and clinical parameters are similar to 

the actual US prevalence numbers (Table 3). 

A clinician might be interested in a specific clinical question related to the treatment of 

the patients. Therefore, we established two options for additional filtering: the first cohort 

represents a truly prognostic setting (e.g. systemically untreated patients, n=809) and the 

second cohort the endocrine-treated ER positive patients (n=414). 

The ER status as determined by IHC was available for 1231 patients, which we used to 

assess the efficacy of ER determination on the microarray. The ER-positive samples (n=968) 

had a markedly higher expression of the ESR1 gene than did the ER negative samples 

(n=263). On Figure 2 we illustrate the distribution of ER positive and ER negative samples as 

measured by microarray and IHC. 90.2 % of the ER positive (945 out of 1048), and 89.8% of 

ER negative (160 out of 183) predictions were correct.  

Markers of cell proliferation have been proposed and evaluated as prognostic factors 

in breast cancer. We computed Kaplan-Meier plots for the markers Ki67, cyclin D, cyclin E, 

the cyclin inhibitors p27 and p21, thymidine kinase, and topoisomerase II to assess their effect 

on prognosis (Table 2 and Figure 3).  
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DISCUSSION 

The discovery of prognostic markers is a high priority task in breast cancer biomarker 

research. In our study we combined raw data from several studies; this enabled us to treat the 

data as a single dataset which makes the use of existing algorithms directly applicable. By 

combining multiple datasets the statistical power is dramatically increased. Prior to our work, 

no suitable tool was available which could help to estimate the prognostic value of any 

selected gene in a large cohort of clinical patients. In our service, after dividing the patients 

into two groups based on the expression of the selected gene, a Kaplan-Meier plot is 

generated. In this, 1809 patient are used all together, of which 1593 have relapse free survival 

data, 594 have overall survival data and 767 have distant metastasis free survival data. As our 

service performs the requested analysis in real time on the original data, the extension of the 

analysis (e.g. the inclusion of additional samples or filtering for other clinical parameters) will 

be easily feasible in the future. 

Because gene expression arrays might be used to confirm ER status, we implemented 

an estimation of ER status based on gene expression data. Previous studies have shown 

significant correlation between mRNA concentrations and routinely established (IHC based) 

clinical ER status [17,18,19]. In the study of Gong et al. the same platform was used as in our 

study [20]. They used immunhistochemistry to independently measure the ER status and to 

establish a statistical threshold for ESR1 mRNA level to assign ER status to tumor samples. 

They suggested using an ESR1 mRNA cutoff value of 500 to identify ER positive status with 

an overall accuracy of 90%. By using the above threshold in the 1231 patients with available 

ER status data, we also achieved overall accuracy of 90%. Thus, we confirmed the capability 

to use microarrays to measure ER status. Because we performed a second scaling 

normalization, the original MAS5 expression values (as used in the study of Gong et al.) were 

slightly transformed. However, this transformation made it possible to compare gene 

expression measurements made on two different microarray platforms. On our webpage, the 

ER status for all patients can be assessed by gene expression, and this option increases the 

number of patients available for ER-status dependent classification from 1231 to 1809. 

Another important clinical question is the use of proliferation-genes to predict 

prognosis in breast cancer patients. A previous analysis of 32 papers could not allow the 

inclusion of these markers on the list of ASCO-approved standard prognostic and predictive 

factors due to methodological problems [21]. In order to clarify these contradictory results we 
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computed Kaplan-Meier plots for the markers (MKI67, CCND1, CCND2, CCND3, CCNE1, 

CCNE2, CDKN1B, CDKN1A, TK1, TK2, TOP2A and TOP2B) to assess their effect on 

prognosis. We can confirm the prognostic value of MKI67, CCND2, CCND3, CCNE2, and 

CDKN1A, as well as TK2. Both TOP2A and TOP2B had a very high predictive power. 

However, the results of CCND1, CCNE1, CDKN1B and TK1 were (although partially 

significant) not convincing. Therefore, we suggest the use of above prognostic genes as 

measured using microarrays. 

We must note a limitation of our approach: the use of the median (or upper/lower 

quartile) sample for dividing the samples into high- and low- expression groups. In principle, 

a cutoff-free correlation analysis of gene expression and survival data is possible using Cox 

proportional hazard models. In this frame work, significance and hazard ratio could be 

assessed, but no survival curves for a good and a poor prognosis group could be drawn. The 

advantage of the use of the median for splitting is the negligible effect of outliers, which – due 

to the high dynamic range of the microarrays – could seriously skew the results when using 

the mean. Moreover, median enables to have high- and low-expression groups of virtually the 

same size which enables the drawing of robust Kaplan-Meier plot. The determination of an 

exact cutoff value for each transcript could improve the results. However, in this case the 

expression should be confirmed by independent methods like RT-PCR or 

immunhistochemistry to achieve a reliable correlation. Such a fine-tuning – as it has been 

done for the ESR1 gene in ovarian cancer [22] – must be performed for each gene 

individually and is therefore not in the scope of present study. 

Finally, we added a visual enhancement to the service to help to select the probe sets 

with the best quality. The individual probes on the probe selection drop-down menu have 

background color, which represents the estimated quality of the probe set: green=excellent 

(average expression of the probe set in the 1809 patients is over 500), red=not reliable 

(average expression < 100 AND maximal expression < 500), yellow=intermediate (all other 

probes). 

In summary, we developed a web service which is capable evaluating the prognostic 

utility of 22,277 genes in 1809 breast cancer patients and specifically used this tool to 

evaluate the effect of the proliferation-related genes in breast cancer prognosis. The 

integrative genomic analysis is still evolving; thus future integration of additional forms of 

data such as sequence, location, or copy number variations might potentially add vital 
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additional information which will enable us to deliver higher accuracy in prognosis 

prediction. 
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Table 1. Clinical properties of the microarray datasets used in the analysis.  
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GSE12276 GPL570 NA NA 204(100%) 2.2±1.8 NA NA NA 204 [23] 
GSE16391 GPL570 55(100%) 33(60%) 55(100%) 3.0±1.2 2/35/18 61±9 NA 55 [24] 
GSE12093 GPL96 136(100%) 0(0%) 20(15%) 7.7±3.2 NA NA NA 136 [25] 
GSE11121 GPL96 NA 0 (0%) 46(23%) 7.8±4.2 58/136/35 NA 2.1±1 200 [26] 
GSE9195 GPL570 77(100%) 36(47%) 13(17%) 7.8±2.5 14/20/24 64±9 2.4±1 77 [27] 
GSE7390 GPL96 134 (68%) NA 91 (46%) 9.3±5.6 30/83/83 46±7 2.2±0.8 198 [28] 
GSE6532 GPL96 70 (86%) 22 (27%) 19 (23%) 6.1±3.1 0/54/1 64±10 2.5±1.2 82 [29] 
GSE5327 GPL96 0(0%) NA 11(19%) 6.8±3.1 NA NA NA 58 [30] 
GSE4922 GPL96 1 0 0 12.17 1 69 2.2 1 [31] 
GSE3494 GPL96 213 (85%) 84 (33%) NA NA 67/128/54 62±14 2.2±1.3 251 [32] 
GSE2990 GPL96 73 (72%) 15 (15%) 40 (39%) 6.6±3.9 27/20/36 58±12 2.3±1.1 102 [33] 
GSE2034 GPL96 209 (73%) 0 107 (37%) 6.5±3.5 NA NA NA 286 [34] 
GSE1456 GPL96 NA NA 40 (25%) 6.2±2.3 28/58/61 NA NA 159 [35] 
TOTAL  968 (78%) 190 (15%) 689 (43%) 6.4±4.1 198/534/312 57±13 2.2±1.1 1809  

Parentheses: percentage of patients within the dataset.
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Table 2. The association between proliferation genes and relapse-free survival. The patients 

were divided into two groups as having higher or lower expression as compared to the 

median. 

Marker Gene Name Affymetrix ID HR RFS p 
212020_s_at 0.95 (0.82-1.1) 1 
212021_s_at 1.13 (0.97-1.31) 1 
212022_s_at 1.8 (1.5-2.1) 1.14E-12 

MKI67 antigen identified by 
monoclonal antibody Ki-
67 

212023_s_at 1.3 (1.1-1.5) 0.0352 
208711_s_at 1.3 (1.1-1.5) 0.0374 CCND1 cyclin D1 
208712_at 1.07 (0.93-1.25) 1* 
200951_s_at 1.2 (1.0-1.4) 0.946 
200952_s_at 0.62 (0.53-0.72) 1.23E-08 

CCND2 cyclin D2 

200953_s_at 0.68 (0.58-0.79) 9.02E-06 
CCND3 cyclin D3 201700_at 0.7 (0.6-0.82) 0.000114 
CCNE1 cyclin E1 213523_at 1.2 (1.1-1.4) 0.1518 

205034_at 2.5 (2.1-2.9) <1e-16 CCNE2 cyclin E2 
211814_s_at 1.2 (1.0-1.3) 1 

CDKN1B cyclin-dependent kinase 
inhibitor 1B (p27, Kip1) 

209112_at 1.3 (1.1-1.5) 0.0132 

CDKN1A cyclin-dependent kinase 
inhibitor 1A (p21, Cip1) 

202284_s_at 0.68 (0.59-0.79) 1.21E-05 

TK1 thymidine kinase 1, 
soluble 

202338_at 1.2 (1.0-1.4) 0.506 

204227_s_at 0.53 (0.45-0.62) 7.26E-
15* 

204276_at 0.67 (0.58-0.78) 4.18E-06 

TK2 thymidine kinase 2, 
mitochondrial 

204277_s_at 0.81 (0.70-0.94) 0.1496 
201291_s_at 2.3 (2.0-2.7) <1e-16 TOP2A topoisomerase (DNA) II 

alpha 170kDa 201292_at 1.8 (1.6-2.1) 2.05E-
13* 

TOP2B topoisomerase (DNA) II 
beta 180kDa 

211987_at 1.7 (1.5-2.0) 4.4E-11 

 
RFS: relapse free survival, HR: hazard ratio, * see Kaplan-Meier plots on Figure 3. 
Bonferroni multiple testing correction was applied when generating the p value. 
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Table 3. Overall clinical characteristics of the patients in our database, and the subset 

designed to match US prevalences are compared to SEER reported US prevalences. 

all* 
Prevalence-

matched subset SEER   
  n % n % % 
ER+ 774 87.8% 412 82.4% 76.3% 
ER- 108 12.2% 88 17.6% 23.7% 
node+ 176 20.0% 168 33.6% 36.5% 
node- 706 80.0% 332 66.4% 63.5% 
grade 1 166 18.8% 86 17.2% 17.1% 
grade 2 469 53.2% 219 43.8% 44.0% 
grade 3 247 28.0% 195 39.0% 38.9% 

total n 882  500   

* only samples for which all clinical data was available simultaneously 
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Figure 1. Flowchart of the Kaplan-Meier drawer 
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Figure 2. Box plot showing normalized expression of ESR1 (probe set 205225_at) in 1231 
tumors divided into two groups based on the IHC diagnosis of ER (1=ER positive, n=968; 
0=ER negative, n=263). 
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Figure 3. The good prognostic effect of the over expression TK2 (A: 204227_s_at) and the 

lower expression of TOP2A (B: 201292_at) are highly significant. The expression of Cyclin 

D1 is not correlated to prognosis at all (C: 208712_at). 
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