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Abstract The transcriptome of breast cancers have been
extensively screened with microarrays and large sets of
genes associated with clinical features have been estab-
lished. The aim of this study was to validate original gene
sets on a large cohort of raw breast cancer microarray data
with known clinical follow-up. We recovered 20 publica-
tions and matched them to Affymetrix HGUI33A
annotations. Raw Affymetrix HGU133A microarray data
were extracted from GEO and MASS5 normalized. For
classifying patients using the selected gene sets, we applied
prediction analysis of microarrays and constructed Kaplan—
Meier plots. A new classification including all patients was
generated using supervised principal components analysis.
Seven studies including 1,470 patients were downloaded
from GEO. Notably, we uncovered 641 microarrays rep-
resenting 251 individual tumor specimens among them,
which were repeatedly described under independent GEO
identifiers. We excluded all redundant data and used the
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remaining 1,079 samples. Eight of the 20 gene sets were
able to predict response at a significance of P < 0.05. The
discrimination of good and poor prognosis groups exclu-
sively relying on gene expression data resulted in high
significance (P = 1.8E—12). A model including genes
fitted by both gene expression and clinical covariates
(lymph node status and grade) contains 44 genes and can
predict response at P = 9.5E—7. The outcome provides a
ranking of the gene lists regarding applicability on an
independent dataset. We established a consensus predictor
combining the available clinical and gene expression data.
The database comprising expression profiles of 1,079
breast cancers can be used to classify individual patients.

Keywords Microarray - Gene expression signature -
Breast cancer prognosis - Bioinformatics

Introduction

Although molecular markers like expression of estrogen
and growth factor receptors, pS2, metallothionein, CD24,
cathepsin D, ERBB2, and mutations in the TP53 gene all
have been correlated to breast cancer prognosis, the use of
single marker provides limited information for the prog-
nosis of an individual patient [1, 2]. In view of the
molecular heterogeneity of breast tumors and the large
number of marker genes involved, studying multiple
genetic alterations simultaneously is of utmost importance.
With the arrival of microarray technologies, searches for
tumor markers can be performed in a discovery-driven
manner in high through-put.

The first microarray-based breast cancer studies have
revealed distinct clinical phenotypes. Two major types,
basal and luminal, have been identified, each with the
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potential to be subdivided into additional subtypes [2-5].
Although histological grade can provide clinically impor-
tant prognostic information, as many as 30-60% of tumors
are classified as grade 2. This grade is associated with an
intermediate risk of recurrence and is thus not informative
for clinical decision making. Gene expression signatures
capable of discerning tumors of grade 1 (G1) and grade 3
(G3) histology might provide a more objective measure of
grade with prognostic benefit for patients with G2 disease
[5].

Estrogen receptor (ER) status is the only globally
accepted treatment predictive factor for hormonal therapy
in primary breast cancer. As only a small proportion (7%)
of cells in the normal mammary epithelium express ER [6],
receptor status is the main discriminator in the high pro-
portion of ER+ tumors. The ER status of breast tumors has
been suggested to either reflect tumor progression with
ER— tumors evolving from ER+ precursors, or to indicate
a distinct origin from different types of epithelial cells in
the mammary gland. Metastases from ER+ tumors may be
ER— [7] supporting the hypothesis that ER-expressing and
ER-negative breast cancers represent different disease
entities [8]. In contrast, a large proportion of the patients
with ER+ breast cancer do not respond to tamoxifen.
These unsolved issues led to a significant number of studies
investigating ER status and prognosis in breast cancer
[8-12].

While many of these studies presented promising
results, most proposed markers were not reproduced in
consecutive studies. The proposed best discriminatory
genes rarely match in different studies. A major criticism
has been that in 90% of early reports the validation set of
patients overlaps with the training set [13]. Additional
critical issues regarding the use of microarray data for
prognostic classification include gene selection bias, error
estimation, fragility of gene signatures, and overoptimistic
performance estimation due to model over-fitting [14].
Over-fitting means finding a discriminatory gene pattern by
chance. This can happen when large numbers of variables
(genes) are assessed for a small number of samples [13].

Michiels et al. re-analyzed data from seven large pub-
lished studies that have attempted to predict prognosis of
cancer patients using data from DNA microarray analysis.
They expanded the standard strategy based on unique
training and validation sets by using multiple random sets.
The list of genes identified as predictors of prognosis was
highly unstable; molecular signatures strongly depended on
the selection of patients in the training sets, the proportion
of misclassified patients decreased as the number of
patients in the training set increased. Five of the seven
studies did not classify patients better than chance [15].

Thus, information based on microarray analysis requires
independent validation in distinct data sets [16]. While the
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use of microarray technology as a diagnostic tool can
potentially revolutionize current breast cancer manage-
ment, critical scientists advocate further studies with
profiling of larger cohorts using single microarray plat-
forms before prospective clinical use of molecular
classifiers can be contemplated [17].

In present study we aimed to perform a large-scale
meta-analysis to compare several different gene sets for
predicting relapse in a set of raw microarray data accessible
through Gene expression omnibus (GEO). A second aim of
the study was to establish a consensus predictor combining
all suggested genes and available patient samples.

Methods
Included raw microarray studies

We systematically searched GEO (http://www.ncbi.nlm.
nih.gov/geo/) using the keywords “breast cancer” and
“gpl96” (platform accession for Affymetrix HGU133A
microarrays). Only studies publishing data for more than
20 patients with available clinical information were con-
sidered. Seven studies published such raw data in GEO,
which were downloaded.

Included gene lists

We have searched Pubmed using the keywords “breast
cancer” and “microarray”. The search was then limited to
studies in English with Pubmed accessible text. Only
genome-wide association studies were selected. Studies
investigating <20 patients or publishing <5 genes were
excluded from the study.

Annotation and matching to the Affymetrix IDs was
performed using the Affymetrix Netaffx analysis centre
(http://www.affymetrix.com/analysis/index.affx). For the
construction of the matched gene lists the available gene
identifiers (Unigene ID, Genbank Accession, gene symbol,
Affymetrix ID) were used. The datasets were combined
using Microsoft Access 2007.

Statistical analyses

The downloaded data was MAS 5.0 normalized in the R
statistical environment (http://www.R-project.org). MASS5.0
applies normalization on an individual chip; it has excellent
specificity and good sensitivity. As MAS 5.0 it is the factory-
default normalization method, in the future even single
microarrays can be added to our table.

In order to apply the gene sets we used the updated
version of the “Prediction Analysis for Microarrays”
(PAM) [18] which uses a semi-supervised method to
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predict patient survival [19]. PAM was performed in a
leave-one-out cross validation and the threshold was set to
include all genes in the prediction. When investigating
datasets with GEO available microarrays, the original
dataset was excluded from the analysis. PAM is a modifi-
cation of the nearest-centroid method and was applied as
previously described.

For establishing a new, consensus predictor, the BRB
Arraytools 3.6.0-beta_3 package was used (developed by
Dr. Richard Simon and Amy Peng Lam, available at
http://linus.nci.nih.gov/BRB-ArrayTools.html). Instead of
using a separate test-set and training-set we performed a
leave-one-out cross validation to assess the performance of
the new predictor. When investigating the gene sets of the
seven studies delivering the GEO data, the samples
resulting from the corresponding study were excluded from
the analysis to avoid inclusion of the training set (the ori-
ginal samples the gene list was derived from) in the test set.
An overview of the applied analytical pathway is depicted
on Fig. 1.

Using a new approach implemented in BRBArrayTools
we evaluated whether the expression data provides more
accurate predictions than that provided by the two other
significant clinical covariates, lymph-node status and
grade. Here, an additional model is developed for a com-
bination of the covariates and the expression data. For each
cross-validated training set, genes are selected which add to
predicting survival over the predictive value provided by
the covariates. The principal components of those genes are
computed and a model fitted containing the covariates and
the supervised principal components. The survival risk
group for the patient omitted from that training set is pre-
dicted using that composite model. Finally a P value is

GEO raw datasets, n=7
(Table 1)

Gene sets, n=20 - ¢
(Table 2) | Normalization: MAS5 |

R l | Combining datasets |
Matching genes to
Affymetrix HGUI33A L

probe sets
(Suppl. Database 1)

Discarding superfluous samples
(Suppl. Table 1) and appending
clinical records
(Suppl. Table 2 and 3)

4>| Filtering for genes }4—‘

I
v v

PAM to apply gene sets to Supervised principal components
prognosis prediction to establish best predictor
(Suppl. Table 4)

l

Kaplan-Meier plots
(Figure 2)

Fig. 1 Overview of the applied analytical pathway

determined which measures whether the expression data
adds significantly to risk prediction compared to the
covariates.

Descriptive statistics, significance for clinical variables
and survival plots were constructed using the Winstat for
Excel software.

Results

Creating a non-redundant database for breast cancer
specimens subjected to expression profiling

Altogether, GEO listed 1,470 raw GPL96 microarray
samples from published studies. When surveying the clin-
ical data, we observed a high similarity between some
studies. Therefore, we compared the gene expression data
of all microarrays and identified 641 redundant samples
related to 251 individual raw microarray files first pub-
lished in GEO under the series accession number
GSE3494. The remaining datasets (GSE2990, GSE4922
and GSE6532) include 389 microarrays identical to
GSE3494 but supplemented with additional clinical infor-
mation (some microarrays were deposited more than
twice). We have listed the redundant GSE3494 samples in
Supplemental Table 1 for future reference. The database
includes the GEO series accession numbers, the GEO
sample accession numbers and the average of normalized
expression values of all transcripts for a given sample. We
found identical average expression values only on identical
microarrays. As none of the publications showed the
complete clinical information, we merged the individual
clinical features into one database (Table 1). The complete
dataset containing the normalized expression values of the
1,079 chips is shown in Supplemental Table 2. The Sup-
plemental Table 3 containing the detailed clinical
information records includes all available clinical data for
each patient. We excluded all redundant samples for the
statistical analysis totaling 1,079 microarrays.

Meta-analysis of published gene sets

Twenty-four published studies representing 20 gene sets
with discriminatory potential for clinical relapse were
included in the study. If several gene lists were available in
these studies, we selected the most extensive one exhibiting
statistical significance. The gene lists are summarized in
Table 2.

For the meta-analysis of the previously published breast
cancer associated genes we used Prediction Analysis of
Microarrays to predict the risk of relapse using the non-
redundant set of microarrays. The analysis was performed
independently for all 20 published discriminatory gene
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Reference

Number of
individual
CEL files

included GSE3494

Number of
CEL files

Size (mm)  Number of
published
CEL files

Age (year)

relapse free
survival

Average

Relapse event

of lymph

Proportion
node+

Proportion of ER+

Grade: 1/2/3

Table 1 Descriptive statistics of the raw datasets used in the study

GEO ID

@ Springer

[26]
[27]

159
286
251

159
286
251

NA NA
NA

62 +23
6.5+ 3.5

NA

40 (25%)

NA

28/58/61 NA
NA

GSE1456

107 (37%)

NA

209 (73%)
213 (85%)
147 (78%)
211 (85%)
114 (88%)
134 (68%)

GSE2034*
GSE3494
GSE2990
GSE4922
GSE6532

[28]
[31
[51

(251)
87

22+13
22+ 1.1
22+13
26+ 1.2
22 +08
23+ 14
23+12

62 + 14
56 +£ 12
62 + 14
64 £ 10
46 £ 7
58 +£ 14
56 £ 13

84 (33%)
30 (16%)
81 (33%)

55 (43%)

NA

67/128/54
64/48/55

102

189
249

6.6 £39
7.1 £43
56 +£32
93 +56
7.0+ 42
9.0+ 34

67 (35%)
89 (36%)
44 (34%)
91 (46%)

247°
56

68/126/54
1/94/4

[10]

[29]

82
198

138

198
1,470

30/83/83

GSE7390

641
251

438 (36%)
386 (36%)

250 (30%)
121 (13%)

1,028 (79%)
700 (77%)

258/537/312

TOTAL

1,079

123/206/151

TOTAL®

NA not available

2 Only MASS5 data; ® one additional CEL file is from GSE2990; © excluding redundant samples, only these arrays were included in the analysis

sets. Eight of them were able to predict relapse at a P value
<0.05 (Table 2). Using PAM we also constructed the
training error plots to estimate the performance of top
discriminatory genes defined in these studies. Notably,
even gene sets exhibiting low overall predictive ability
contained some top genes capable of discriminating patient
tumors with or without relapse (data not shown).

Establishing a new predictor for relapse-free survival

We have computed a new predictor based on all genes
associated with breast cancer and all available microarrays.
In this setting only the gene expression data was used. In
the supervised principal component analysis the threshold
was set to 0.001 to fit Cox proportional hazard model. The
best discriminatory gene signature contains 376 genes
(Supplemental Table 4) and the result of a leave-one-out
discrimination has a significance of 1.8E—12. The Kaplan—
Meier survival plot is presented in Fig. 2.

We have calculated the predictive power of the available
clinical variables: lymph node status (P = 0.01) and grade
(P = 0.0005) were significant, while ER status (P = 0.11)
was not predictive for relapse-free survival (Fig. 2).
Therefore, the predictive calculation was extended to
evaluate whether the expression data provides more accu-
rate predictions than that provided by the two other
significant clinical covariates, lymph-node status and grade.
Forty-four genes performed over the adjusted clinical
covariates. The prediction based on these genes and the
clinical covariates was highly significant (P = 9.5E—7)
and is presented in Fig. 2 and the gene list in Supplemental
Table 3.

Establishing a database for future predictions

All available MAS 5.0 normalized microarray expression
data were merged into a large training set to permit
inclusion of new patient data as test samples and to allow
classification of those in a straight forward manner. The
complete data set of all samples with complete clinical
information (and the necessary experiment descriptor file)
is available as Supplemental Tables 5 and 6 in a BRB-
ArrayTools compatible format for independent application.

Discussion

We have critically assessed the potential of microarray
data for predicting relapse-free survival in breast cancer
patients based on a large cohort of tumor samples
(n = 1,079) previously collected in and documented by
different clinical centers. The gene lists which were
developed to predict prognosis generally outperform those
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Fig. 2 Kaplan—-Meier survival plot for all patients using the best 376 genes, lymph-node status, ER status, grade and the top 44 genes fitted by

both gene expression and covariates (lymph node status and grade)

focusing on ER receptor or subtype. Our results provide a
ranking of published predictors with regard to their appli-
cability on independent data sets. The best discriminative
pattern can be reached by including all available samples.
When screening relevant publications and entries in public
databases, we detected 389 microarray-based data sets that
had been repeatedly entered in GEO with new accession
numbers. Since the inclusion of repeated microarray data
that were not derived independently could result in over-
optimistic classification and lack of reproducibility in
validation studies, we emphasize the necessity for curating
public databases to eliminate such anomalies.

Another comparative analysis was based on 374 genes
extracted from published gene lists relevant for breast
cancer prognosis [20], but did not validated the original
gene sets like our study. The authors included redundant
samples from GSE2990 and GSE4990. Although their
repeatedly validated gene-set predicted clinical response
better than tumor size, lymph node status, ER status and
grade, the presence of redundant data might influence their
results.

Predictions of clinical outcome based on gene expres-
sion patterns were met with some skepticism, because
multiple, non-overlapping gene sets were able to predict
molecular phenotypes correctly. For example, a recent
study on microarray data related to breast cancer, renal
tumors and lymphoma and including clinical information
compared the prediction errors using different training sets.
The results suggested that expression profiles established in
this way showed little overlap [21]. We achieved

significant prediction success using different gene sets
established on different microarray platforms, and there-
fore we provide additional support to this finding.

To increase the significance of the prediction, we have
used all available samples to build the consensus predictor
instead of splitting the microarray data into a training and
test set. Ntzani et al. found by investigating 84 diverse
microarray studies that significant associations were 3.5
times more likely when the sample size was doubled and
9.7 times more likely when the number of microarray
probes were increased tenfold [22]. These authors also
advocated the use of complete cross validation in order not
to inflate the predictive power [22]. Accordingly, we
included all samples in the initial training set and the
Kaplan—Meier plot was based on the results of a leave-one-
out cross validation (LOOCV). The LOOCYV provides a
nearly unbiased estimate of the true error rate of the clas-
sification procedure [23]. At the end of the LOOCV
process, we have constructed different models for each
sample only to estimate the prediction error. The model
that is suggested for future predictions is the one con-
structed at the beginning using all 1,079 samples.

We used the supervised principal component analysis
and the prediction analysis of microarrays for classifica-
tion. More sophisticated algorithms do not perform better
than the simple ones as shown by Dudoit and colleagues
who have evaluated simple—diagonal linear discriminant
analysis and nearest-neighbour classification—and com-
plex—classification trees and machine-learning techniques
such as bagging and boosting—classification methods [24].
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The analysis was performed after mapping the gene sets to
a single platform. This mapping relies on the proven fun-
damental assumption that different microarrays are capable
to reproducibly measure gene expression [25].

In our study we demonstrate that different microarray
datasets can be used to predict relapse in an independent
dataset established using single channel microarrays. In
this context, our study is a validation for the original
studies using a much larger patient cohort. Finally, we
established a database incorporating the genes from 20
microarray studies and gene expression data for 1,079
patients. This BRB Arraytools compatible database in an
easily extendable format and can be used to validate future
studies or to classify individual patients.
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